Tag Archives: L3VPN

vrf-table-label on Juniper JunOS

In this blog we will discuss about one important knob in JunOS i.e vrf-table-label.

Vrf-table-label is useful for 2 purposes in Junos

  1. Save label space
  2. Perform 2 lookup on packet

So let’s understand it more. We will start with 1st point above

Junos by default allocates same VPN Label to prefixes recieved from one CE Interface. So for example if you have 2 CEs connected via 2 different interfaces and they are in same VPN on PE then Junos will allocate 2 different VPN labels to the prefixes recieved. In Cisco this is different where VPN label is allocated on per prefix which according to some is not optimal but we are not comparing anything here.

Currently in our configuration vrf-table-label is not configured. If you see below, we have 2 CEs connected to Juniper M320 PE1 via 2 different interfaces and we have Ebgp relationship between them and we are receiving some routes over it.

PE1-re1> show route 10.203.20.6
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, – = Last Active, * = Both

10.203.20.4/30 *[Direct/0] 3d 00:21:55
> via ge-0/3/2.20

PE1-re1> show route 10.203.12.2
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, – = Last Active, * = Both

10.203.12.0/30 *[Direct/0] 00:10:26
> via so-1/0/0.12

PE1-re1> show route receive-protocol bgp 10.203.12.2 table MVPN-1.inet.0
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
Prefix                              Nexthop              MED Lclpref AS path
* 10.1.225.128/32          10.203.12.2                                 65012 I
10.203.12.0/30               10.203.12.2                                 65012 I

PE1-re1> show route receive-protocol bgp 10.203.20.6 table MVPN-1.inet.0
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
Prefix                              Nexthop             MED Lclpref AS path
* 10.0.233.0/30               10.203.20.6                                65020 I

Now if we look at the VPN label which is being tagged by this PE1 for the routes received by CE, we can see that Junos is allocating separate VPN Labels to both of the routes which is what I mentioned earlier.

PE1-re1> show route advertising-protocol bgp 10.198.123.236 10.0.233.0/30 extensive
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
* 10.0.233.0/30 (2 entries, 1 announced)
BGP group mvpn-rr type Internal
Route Distinguisher: 10.198.123.203:32764
VPN Label: 300448
Nexthop: Self
Flags: Nexthop Change
Localpref: 100
AS path: [65004] 65020 I
Communities: target:65000:321 src-as:65004:0 rt-import:10.198.123.203:16

PE1-re1> show route advertising-protocol bgp 10.198.123.236 10.203.12.0/30 extensive
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
* 10.203.12.0/30 (2 entries, 1 announced)
BGP group mvpn-rr type Internal
Route Distinguisher: 10.198.123.203:32764
VPN Label: 300480
Nexthop: Self
Flags: Nexthop Change
Localpref: 100
AS path: [65004] I
Communities: target:65000:321 src-as:65004:0 rt-import:10.198.123.203:16

Now if we configure the vrf-table-label under routing instance on PE1, we can see the difference.

[edit routing-instances MVPN-1]
PE1-re1# set vrf-table-label

edit routing-instances MVPN-1]
PE1-re1# commit
re1:
configuration check succeeds
re0:
commit complete
re1:
commit complete

See the difference below, now only one VPN label is being allocated for the whole VRF and this really saves the label space.

PE1-re1> show route advertising-protocol bgp 10.198.123.236 10.203.12.0/30 extensive
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
* 10.203.12.0/30 (2 entries, 1 announced)
BGP group mvpn-rr type Internal
Route Distinguisher: 10.198.123.203:32764
VPN Label: 39
Nexthop: Self
Flags: Nexthop Change
Localpref: 100
AS path: [65004] I
Communities: target:65000:321 src-as:65004:0 rt-import:10.198.123.203:16

PE1-re1> show route advertising-protocol bgp 10.198.123.236 10.0.233.0/30 extensive
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
* 10.0.233.0/30 (2 entries, 1 announced)
BGP group mvpn-rr type Internal
Route Distinguisher: 10.198.123.203:32764
VPN Label: 39
Nexthop: Self
Flags: Nexthop Change
Localpref: 100
AS path: [65004] 65020 I
Communities: target:65000:321 src-as:65004:0 rt-import:10.198.123.203:16

So this completes one part. Now moving over to 2nd part.
Junos by default looks at the incoming MPLS packet, Pops the label and sends the underlying packet to CE without looking at IP packet at all. This situation is fine in case you have PE connected to CE via P2P links like Serial links however if you have Broadcast medium like Ethernet in between then router can’t just send the packet like this without first building the frame and to build frame it needs to do ARP lookup to get the MAC Address of the CE. So it needs to do extra lookup apart from MPLS lookup.
Vrf-table-label actually allows the router to do 2 lookups. The first lookup is done on the VPN label to determine which VRF table to refer to, and the second lookup is done on the IP header to determine how to forward packets to the correct end hosts on the shared medium. This can be useful for number of applications like ingress firewall filters, CoS etc. Now a days VT interface (tunnel-pic) is also used to do the same however if router doesn’t support tunnel-pic then vrf-table-label can be used in its place to do the same thing. With VTL, lsi interface is created which allows it to handle the first lookup before a second ARP/IP lookup is carried out through the PFE.

Lets rollback the changes we did above and come back to same situation where unique label is assigned per CE port.

VPN Label 300560 is assigned for the route by PE1 and when mpls table is checked for that particular label we can see action is Pop plus to send the packet directly to interface.

PE1-re1> show route advertising-protocol bgp 10.198.123.236 10.203.12.0/30 extensive
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
* 10.203.12.0/30 (2 entries, 1 announced)
BGP group mvpn-rr type Internal
Route Distinguisher: 10.198.123.203:32764
VPN Label: 300560
Nexthop: Self
Flags: Nexthop Change
Localpref: 100
AS path: [65004] I
Communities: target:65000:321 src-as:65004:0 rt-import:10.198.123.203:16

PE1-re1> show route table mpls.0 label 300560
mpls.0: 57 destinations, 57 routes (57 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, – = Last Active, * = Both
300560 *[VPN/170] 00:00:41
> via so-1/0/0.12, Pop

If we enable the vrf-table-label now and check the same route and corresponding label. Lets see what we see.

PE1-re1> show route advertising-protocol bgp 10.198.123.236 10.203.12.0/30 extensive
MVPN-1.inet.0: 46 destinations, 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
* 10.203.12.0/30 (2 entries, 1 announced)
BGP group mvpn-rr type Internal
Route Distinguisher: 10.198.123.203:32764
VPN Label: 40
Nexthop: Self
Flags: Nexthop Change
Localpref: 100
AS path: [65004] I
Communities: target:65000:321 src-as:65004:0 rt-import:10.198.123.203:16

PE1-re1> show route table mpls.0 label 40
mpls.0: 53 destinations, 53 routes (53 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, – = Last Active, * = Both

40 *[VPN/0] 00:00:12
to table MVPN-1.inet.0, Pop

So we can see, label 40 is basically pointing to routing-table now and not to interface as in our previous case. You can see the corresponding LSI interface allocated by looking at following command

PE1-re1> show route instance MVPN-1 detail
MVPN-1:
Router ID: 10.14.233.1
Type: vrf State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
lsi.24
so-1/0/0.12
ge-0/3/3.50
ge-0/3/2.20
vt-1/2/0.20
Route-distinguisher: 10.198.123.203:32764
Vrf-import: [ __vrf-import-MVPN-1-internal__ ]
Vrf-export: [ __vrf-export-MVPN-1-internal__ ]
Vrf-import-target: [ target:65000:321 ]
Vrf-export-target: [ target:65000:321 ]
Fast-reroute-priority: low
Tables:
MVPN-1.inet.0 : 77 routes (46 active, 0 holddown, 0 hidden)
Restart Complete
MVPN-1.inet.1 : 11 routes (9 active, 0 holddown, 0 hidden)
Restart Complete
MVPN-1.mvpn.0 : 77 routes (42 active, 7 holddown, 0 hidden)
Restart Complete

Ok so that’s all. I hope you liked the blog and I was able to resolve some of your confusion on this command. If you still have any queries, please let me know and I would be happy to discuss.

Regards
Mohit Mittal

 

 

Advertisements

BGP Route Distinguisher vs Route Target

In this post I will try to clarify the difference between route distinguisher and route target within the Cisco world of MPLS VPN’s. The main confusion comes from the fact that in most Cisco Press books they always show the route distinguisher value and route target value as the same.
They are not the same and are used for completely different things.
In simple terms the route distinguisher is used to create a unique 96 bit address called the VPNv4 address.
This ensures that even if two customers are running the 10.0.0.0/8 address space their addresses remain unique within the MPLS network.
The Route Target is a 64 bit BGP community used to tag prefixes. It tells the Remote PE routers which prefix it can import.

Route Distinguisher

The route distinguisher has only one purpose, to make IPv4 prefixes globally unique. It is used by the PE routers to identify which VPN a packet belongs to, e.g to enable a router to distinguish between 10.0.0.1/8 for Customer A and 10.0.0.1/8 for Customer B. The route distinguisher is made up of an 8 byte field prefixed to the customer 4 Byte IPv4 address, the resulting 12 byte field makes a unique VPNv4 address.

RD

R1(config)#ip vrf Customer_A

If we type “rd ?” you can see 2 options for configuring the RD..

R1(config-vrf)#rd ?
ASN:nn or IP-address:nn VPN Route Distinguisher

For the purpose of this description I will configure the RD value as 65355:10 which AS number 65535 and Unique value 10 combinatin

R1(config-vrf)#rd 65355:10

To verify this value enter the command sh ip vrf
R1#sh ip vrf
Name Default RD Interfaces
Customer_A 65355:10

Route Target

The route target on the other hand is an 8 byte field which is a BGP extended Communities Attribute and it defines which prefixes are exported and imported on the PE routers.

RT

So for example consider Router R3 has 2 VRF’s configured on it “Customer_A” and “Customer_B” so you would define under each vrf a unique route target value, these take the same format as the route distinguisher, but for the purpose of this explanation we are going to use 1:1 for Customer_A and 2:2 for Customer_B. On R3 we want to export and import the prefixes for Customer A and B, however on router R1 we only want to import and export the prefixes for Customer_A and on router R2 we only want to import and export the prefixes for Customer_B

To conclude, the route distinguisher and route target values perform two completely separate functions, and although in a lot of cisco books the values are the same (which they can be) it is confusing to someone learning MPLS for the first time as they assume they do the same thing.
The route distinguisher makes a unique VPNv4 address across the MPLS network and the route target defines which prefixes get imported and exported on the PE routers.

 

Regards

Mohit Mittal